INDEX

1.	WIND LOAD	2
	1.1. General data	
	1.2. Velocity pressure	
	1.2.1. Exposure coefficient	
	1.2.2. Topographic factor	
	1.2.3. Velocity pressure per floor	
	1.3. Design pressure	
	1.3.1. Pressure coefficients	
	1.3.2. Gust-effect factor	4
	1.3.3. Design pressure per floor	5
	1.4. Wind loads per floor	5

Ejemplo práctico de cálculo

Date: 02/23/22

WIND LOAD

Design code used: ASCE/SEI 7-05

Minimum Design Loads for Buildings and Other Structures Design method: Analytical procedure (ASCE/SEI 7-05, 6.5)

1.1. General data

Wind action in the X direction is considered Wind action in the Y direction is considered Location data

V: Basic Wind Speed (ASCE/SEI 7-05, 6.5.4)

V: 67.0 m/s

Occupancy category (ASCE/SEI 7-05, 6.5.5): Category IV

Terrain category (ASCE/SEI 7-05, 6.5.6)

Category D

Land orography (ASCE/SEI 7-05, 6.5.7)

X Direction [0° - 180°]: Flat Y Direction [90° - 270°]: Flat

Tributary widths

Tributary widths are the lengths of the façade exposed in the direction perpendicular to the wind action.

Floor	X Width (m)	Y Width (m)		
Roof	2.00	2.00		
Floor 3	5.00	5.00		
Floor 2	10.00	10.00		
Floor 1	10.00	10.00		
Ground floor	5.00	5.00		

Coefficients applied to the wind action

+X: 1.00 -X: 1.00 +Y: 1.00 -Y: 1.00

1.2. Velocity pressure

The velocity pressure, q_z , evaluated at height z, shall be calculated by the following equation:

$$q_z = 0.613 \cdot K_z \cdot K_{zt} \cdot K_d \cdot V^2 \cdot I$$
 (ASCE/SEI 7-05, 6.5.10)

Parameters required to define the dynamic pressure

V: Basic Wind Speed (ASCE/SEI 7-05, 6.5.4)
I: Importance factor (ASCE/SEI 7-05, Table 6-1)

V: <u>67.0</u> m/s I: 1.15

Occupancy category (ASCE/SEI 7-05, 6.5.5): Category IV

 K_d : Directionality factor (ASCE/SEI 7-05, Table 6-4) K_d : 0.85

Page 2

Ejemplo práctico de cálculo

Date: 02/23/22

 K_z : Exposure coefficient (ASCE/SEI 7-05, 6.5.6.6)

K_{zt}: Topographic factor (ASCE/SEI 7-05, 6.5.7.2)

1.2.1. Exposure coefficient

K_z: Exposure coefficient (ASCE/SEI 7-05, 6.5.6.6)

$$K_z = 2.01(z/z_g)^{2/\alpha}$$
 $4.6m \le z \le z_g$ $K_z = 2.01(4.6/z_g)^{2/\alpha}$ $z < 4.6m$

Terrain exposure constants (ASCE/SEI 7-05, Table 6-2)

Direction	Wind at 0°	Wind at 90°	Wind at 180°	Wind at 270°
Exposure	Category D	Category D	Category D	Category D
а	11.5	11.5	11.5	11.5
z _g (m)	213.36	213.36	213.36	213.36

Exposure coefficient K_z per floor (ASCE/SEI 7-05, Table 6-3)

·					
K_{z}					
Floor	Wind at 0°	Wind at 90°	Wind at 180°	Wind at 270°	
Roof	1.248	1.248	1.248	1.248	
Floor 3	1.195	1.195	1.195	1.195	
Floor 2	1.133	1.133	1.133	1.133	
Floor 1	1.048	1.048	1.048	1.048	
Ground floor	1.030	1.030	1.030	1.030	

		K_z		
Floor	Wind at 0°	Wind at 90°	Wind at 180°	Wind at 270°
MAX(5, h)	1.248	1.248	1.248	1.248

1.2.2. Topographic factor

K_{zt}: Topographic factor (ASCE/SEI 7-05, 6.5.7.2)

 K_{zt} : 1

1.2.3. Velocity pressure per floor

Velocity pressure q_z per floor (ASCE/SEI 7-05, 6.5.10)

2 4 9 5 1.25 (1.252, 521 7 55)						
	q _z (kN/m²)					
Floor	Wind at 0°	Wind at 90°	Wind at 180°	Wind at 270°		
Roof	3.36	3.36	3.36	3.36		
Floor 3	3.22	3.22	3.22	3.22		
Floor 2	3.05	3.05	3.05	3.05		
Floor 1	2.82	2.82	2.82	2.82		
Ground floor	2.77	2.77	2.77	2.77		

q_h (kN/m ²)					
Floor Wind at 0° Wind at 90° Wind at 180° Wind at 270					
h	3.36	3.36	3.36	3.36	

h: Mean roof height of a building

h: 13.75 m

1.3. Design pressure

The design wind pressure for the main wind force-resisting system shall be determined by the following equation:

Ejemplo práctico de cálculo

 $p = q_z GC_{p,w} - q_h GC_{p,l}$

(ASCE/SEI 7-05, 6.5.12.2 and fig. 6-6)

Where:

qz: Velocity pressure evaluated at height z

q_h: Velocity pressure evaluated at height h

 $C_{\scriptscriptstyle p,w}\!\!:$ Windward pressure coefficient

C_{p,l}: Leeward pressure coefficient

G: Gust-effect factor

1.3.1. Pressure coefficients

X Direction [0° - 180°]

C _{p,w} : Windward pressure coefficient (ASCE/SEI 7-05, Figure 6-6)	$C_{p,w}$: 0.80
C _{p,l} : Leeward pressure coefficient (ASCE/SEI 7-05, Figure 6-6)	$C_{p,l}$:0.50
L/B: Ratio	L/B : 1.00
L: Horizontal dimension of the building measured parallel to the wind direction	L : _6.83 m
B: Horizontal dimension of the building measured normal to the wind	

B: Horizontal dimension of the building measured normal to the wind direction

B : <u>6.83</u> m

Date: 02/23/22

Y Direction [90° - 270°]

C _{p,w} : Windward pressure coefficient (ASCE/SEI 7-05, Figure 6-6) C _{p,l} : Leeward pressure coefficient (ASCE/SEI 7-05, Figure 6-6)	$C_{p,w} : 0.80$
L/B: Ratio	C _{p,I} : <u>-0.50</u> L/B : 1.00
L: Horizontal dimension of the building measured parallel to the wind direction	L: 6.83 m
B: Horizontal dimension of the building measured normal to the wind direction	B: <u>6.83</u> m

1.3.2. Gust-effect factor

Flexible structure: structure whose fundamental period is smaller than 1Hz.

Rigid structure: structure whose fundamental period is greater than or equal to 1Hz.

Gust-effect factor for rigid buildings

For rigid buildings, the gust-effect factor shall be calculated using the formula:

$$G = 0.925 \left(\frac{1 + 1.7 g_{Q} I_{z} Q}{1 + 1.7 g_{v} I_{z}} \right)$$
 (ASCE/SEI 7-05, 6.5.8.1)

Iz: Intensity of turbulence at height z

$$I_{z_s} = c \left(\frac{10}{z}\right)^{1/6}$$

z: Equivalent height of the structure

$$\overline{z} = 0.6 \cdot h$$

h: Mean roof height of a building h: 13.75 m

c: Turbulence intensity factor (ASCE/SEI 7-05, Table 6-2)

 g_o : Peak factor for background response (ASCE/SEI 7-05, 6.5.8.1) g_o : 3.4 g_v : Peak factor for wind response (ASCE/SEI 7-05, 6.5.8.1) g_v : 3.4

Q: Background response factor (ASCE/SEI 7-05, 6.5.8.1)

Page 4

Ejemplo práctico de cálculo

$$Q = \sqrt{\frac{1}{1 + 0.63 \left(\frac{B + h}{L_{z}}\right)^{0.63}}}$$

B: Horizontal dimension of the building measured normal to the wind direction

h: Mean roof height of a building

Lz: Integral length scale of turbulence

$$L_{\overline{z}} = \ell \left(\frac{\overline{z}}{10}\right)^{\overline{\epsilon}}$$

I: Integral length scale factor (ASCE/SEI 7-05, Table 6-2)

e: Integral length scale power law exponent (ASCE/SEI 7-05, Table 6-2)

Terrain exposure constants (ASCE/SEI 7-05, Table 6-2)

Direction	Wind at 0°	Wind at 90°	Wind at 180°	Wind at 270°
Exposure	Category D	Category D	Category D	Category D
С	0.15	0.15	0.15	0.15
I	198.1	198.1	198.1	198.1
е	0.13	0.13	0.13	0.13
b				
а				

Calculation of the gust-effect factor, G

Direction	Wind at 0°	Wind at 90°	Wind at 180°	Wind at 270°
l _z	0.16	0.16	0.16	0.16
Lz	193.27	193.27	193.27	193.27
Q	0.93	0.93	0.93	0.93
g _Q	3.40	3.40	3.40	3.40
g _v	3.40	3.40	3.40	3.40
$g_{\scriptscriptstyle R}$				
V_z				
R				
G	0.89	0.89	0.89	0.89

1.3.3. Design pressure per floor

Design pressure, p (ASCE/SEI 7-05, 6.5.12.2 and fig. 6-6)

<u> </u>						
p (kN/m²)						
Floor	Wind at 0°	Wind at 90°	Wind at 180°	Wind at 270°		
Roof	3.90	3.90	3.90	3.90		
Floor 3	3.80	3.80	3.80	3.80		
Floor 2	3.68	3.68	3.68	3.68		
Floor 1	3.52	3.52	3.52	3.52		
Ground floor	3.49	3.49	3.49	3.49		

1.4. Wind loads per floor

The design wind loads for the main wind force-resisting system shall be determined using the following equation:

Date: 02/23/22

Ejemplo práctico de cálculo

 $F_i = (p_i \cdot A_i) \cdot c$

Where:

F_i: Wind load that acts on floor 'i'

p_i: Design pressure on floor 'i'

A_i: Are of floor 'i' on which the design wind pressure acts

$$A_i = b_i \cdot h_i$$

 $b_{\mbox{\tiny i}}.$ Tributary width of floor 'i' perpendicular to the analysed direction

3.49

h_i: Height of floor 'i'

Ground floor

c: Coefficient applied to the wind action

	Wind a	t 0° (+X)		
Floor	p (kN/m²)	b (m)	h (m)	F (kN)
Roof	3.90	2.00	1.50	11.712
Floor 3	3.80	5.00	2.93	55.625
Floor 2	3.68	10.00	2.85	104.975
Floor 1	3.52	10.00	2.85	100.319
Ground floor	3.49	5.00	2.53	44.003
	Wind a	t 90° (-Y)		
Floor	p (kN/m²)	b (m)	h (m)	F (kN)
Roof	3.90	2.00	1.50	-11.712
Floor 3	3.80	5.00	2.93	-55.625
Floor 2	3.68	10.00	2.85	-104.975
Floor 1	3.52	10.00	2.85	-100.319

Wind at 180° (-X)						
Floor	p (kN/m²)	b (m)	h (m)	F (kN)		
Roof	3.90	2.00	1.50	-11.712		
Floor 3	3.80	5.00	2.93	-55.625		
Floor 2	3.68	10.00	2.85	-104.975		
Floor 1	3.52	10.00	2.85	-100.319		
Ground floor	3.49	5.00	2.53	-44.003		

5.00

2.53

-44.003

Wind at 270° (+Y)							
Floor	p (kN/m²)	b (m)	h (m)	F (kN)			
Roof	3.90	2.00	1.50	11.712			
Floor 3	3.80	5.00	2.93	55.625			
Floor 2	3.68	10.00	2.85	104.975			
Floor 1	3.52	10.00	2.85	100.319			
Ground floor	3.49	5.00	2.53	44.003			

Date: 02/23/22